

Isabel Márquez (IAA-CSIC)

Coll.:

J. Masegosa,

O. González-Martín,

S. Cazzoli,

L. Hermosa

Most relevant recent results from the studies of LINER nuclear sources

Santander, July 2019

1. Introduction

- Properties
- •LINERs vs. LIERs

2. AGN LINERS

- •X-ray properties and variability
- •MIR spectroscopy. The dusty torus?
- •HST $H\alpha$ imaging
- •The BLR in LINERs revisited. Outflows?

3. Conclusions

4. Most luminous LINERS @ z=0.04-0.11

LINERs: Low Ionization Emission-line Regions Spectral Classification (Heckman 1980)

- Optical spectra
 dominated by emission
 lines from low ionization
 Species ([OI],[NII][SII])
- Early types
- Lower luminosities thanSeyferts
- Continuity ionization state and electron temperature

BUT, difficult detection due to extinction and contamination by circumnuclear star formation

OCHOA

Warning:

broad line LINERs must be AGN powered

LINERS 1.9 (Ho et al. 1997)

- Non Stellar Photoionization

(Osterbrock 1959, Ferland & Netzer 1983, Halpern & Steiner 1983, Ho, Filipenko & Sargent 1993, Allen+2008)

- Shock induced

(Dopita & Sutherland 1996,

Aldrovandi & Contini, Kewley+2001,

Groves+2004)

- Stellar Photoionization

(Terlevich, Melnick 1985,

Binette+1994, Stasinska+2008,

Sarzi+2010, Singh+2013,

Papaderos+2013, Belfiore+2017,

Byler+2019)

Cazzoli et al. (2008)

- Non Stellar Photoionization

(Osterbrock 1959, Ferland & Netzer 1983, Halpern & Steiner 1983, Ho, Filipenko & Sargent 1993, Allen+2008)

- Shock induced

(Dopita & Sutherland 1996, Aldrovandi & Contini, Kewley+2001, Groves+2004)

- **Stellar Photoionization**

(Terlevich, Melnick 1985, Binette+1994, Stasinska+2008, Sarzi+2010, Singh+2013, Papaderos+2013, Belfiore+2017, Byler+2019)

MORPHOLOGY & ENVIRONMENT

SAMPLE: Palomar Sky Survey
LINERs:from E to Sb,
irrespective of the interaction class
(Márquez et al. 2010)

Passive red galaxies (0.09 < z < 0.1) are mostly LINERs (color-cut selected)

(Yan et al. 2012)

LINERs in lower density environments

(Coldwell et al. 2017)

LINERs older and redder

(Coldwell et al. 2018)

INTRODUCTION – LIERS (non-nuclear)

INTRODUCTION – LIERS (non-nuclear)

NGC 5850 (Bremer+ 13)

AGN-powered nucleus? Line asymmetries

INTRODUCTION – LIERS (non-nuclear)

Non Stellar Photoionization, Shock induced, Stellar Photoionization

The shocking power sources of LINERS (Molina et al. 2018)

- "The best model that best described the data comprises an AGN that photoionize the gas near the nucleus and shocks that ionize the gas at larger distances from the nucleus"
- "A single mechanism may not fully explain observed line strengths in LINER emission on scales of 100 ps or larger"

Important caveat: single-zone models, several mechanisms coexisting

multi-zone & multi-process models needed

AGN LINERs – X-rays

SAMPLE: from multi- λ catalogue of 476 LINERs (Carrillo + 1999)

82 LINERs: 68 with *Chandra*, 54 with *XMM-Newton* (40 in common)

Gonzalez-Martín's PhD (González-Martín+2006a, 2009a, 2009b)

(González-Martín+2009a)

MEPL, two absorbers: $\Gamma = 2.11$ ($\sigma = 0.52$), kT = 0.54 ($\sigma = 0.52$)

 $\log NH1 = 21.32 (\sigma = 0.71), \log NH2 = 21.93 (\sigma = 1.36)$

AGN LINERs – X-rays

AGN candidates: 90% when including other wavelengths

Why LINERs are so Dim with M_BH of 10⁸ - 10⁹ Mo?

Compton thick indicator

L([OIII])/L(2-10 keV)

LINERS: <u>63%</u> Compton-thick

(52/82)

Seyfert 2: 23% Compton thick

(Panessa et al. 2006)

(González-Martín+2009b)

AGN LINERs – X-rays

LINERS versus Seyfert 2s

LINERS have

- lower X-ray luminosities
- lower Eddington ratios

(Hernández-García+2016)

Sample: 17 AGN-LINERs with multi-epoch XMM-Newton and/or Chandra obs

Long and short term variations studied

7 LINER1.8-1.9, 9 LINER2

Model:

wabs[NHgal](zwabs[NH1]*mekal[kT,Norm1] +
zwabs[NH2]*plaw[gamma,Norm2])

- No short-term variations
- 50% with long-term variations
- Flux variations due to Norm2 and NH2 (one case)
- Variable at UV

(Hernández-García +2013, 2014, 2016)

AGN LINERs – X-ray variability

LINERS versus Seyfert 2s

Variation due to absorbers at hard X-ray energies were much more frequent in

Seyfert 2s than in LINERs

No LINER changing-look candidates were reported

BUT SEE Frederick et al. 2019!!

UV long-term variations were common in LINERs (not detected in Sey2)

	LINER	Seyfert 2
Short-tem var.	No	No
Long-term var.	Yes	Yes
Variable parameters	Norm2 (NH2 in one case)	Norm2 NH2
Long-term UV	Yes	No

(Hernández-García+2016)

AGN LINERs – MIR spectroscopy

Asmus et al. (2011) correlation from high spatial resolution similar to ours (Spitzer/IRS spectra) suggests that **AGN contrib. may dominate**

(González-Martín et al. 2015)

Bright LINERS $L_x(2-10 \text{ keV}) > 10^{41} \text{ erg/s}$

(González-Martín et al. 2015)

AGN LINERs - MIR spectroscopy

- Spec. decomp.: torus, ISM, stellar
- High resolution MIR images, Xray luminosity
- Affinity propagation method for **grouping**
- LINERS in groups 1 and 2
- Torus contribution negligible for $L_{BOL} \sim 10^{41} \, erg/s$

(González-Martín et al. 2017)

AGN LINERs – Ionized gas

AGN LINERs – The BLR in LINERs revisited. Outflows?

Optical spectroscopy of nearby LINERs:

Type 1 (1.9).....talk by **Sara Cazzoli** (IAA-CSIC)

Type 2....talk by **Laura Hermosa** (IAA-CSIC)

STIS HST versus ground-based Spectral decomposition in several kinematic components Very broad H α lines? Always? Other components, outflows?

AGN LINERs – The BLR in LINERs revisited. Outflows?

Optical spectroscopy of nearby LINERs:

Type 1 (1.9).....talk by Sara Cazzoli (IAA-CSIC)

Type 2.....talk by Laura Hermosa (IAA-CSIC)

STIS HST versus ground-based Spectral decomposition in several kinematic components Very broad H α lines? Always? Other components, outflows?

CONCLUSIONS

X-rays:

60%-90% AGN

Compton-thickness

Comparison with Sey2 properties and variability

MIR spectroscopy:

Bright LINERs similar to Sey2

Torus contribution negligible $L_{BOL} \sim 10^{41}$ erg/s

HST $H\alpha$ imaging:

Outflow/core-halo morphologies

BLR in LINERs 1.9 revisited:

Most luminous LINERs @ z = 0.04 - 0.11

(Mo/yr)

Local LINERs are hosted by massive and old early-type galaxies, with low extinctions, massive SMBHs, old stellar populations, and little or no star-formation

- MLLINERs studied in this work have: all morphologies, higher extinctions, much higher **SFRs**

- This kind of LINERs first detected @ z ~ 0.3 their existence confirmed in the local universe (@z = 0.04 - 0.11) so evolutionary scenario

- Same M*, SFRs, and LAGN at both redshifts
- They lie along the LAGN = LSF line (co-evolution?)
- Most of them lie on the MS of SF galaxies,

with $M^* > 10^{10} Mo$

- The fraction of LINERs on the MS depends

on their AGN luminosity

(Povic et al. 2016)

> 60% of all low-redshift LINERs (Leslie et al. 2016)