Speaker
Description
Our work estimates the present-day abundance of axion substructures, as is necessary for predicting their effect on cosmological microlensing caustics and pulsar timing. Our calculations suggest that if pulsar timing and microlensing probes can reach recent sensitivity forecasts, they may be sensitive to the post-inflation axion dark matter scenario, even when accounting for uncertainties pertaining to axion strings. For pulsar timing, the most significant caveat is whether axion minihalos are disrupted by stars, which our estimates show is mildly important at the most relevant masses. Finally, as our gravitational simulations are scale invariant, the results can be extended to models where the dark matter is comprised of other axion-like particles and even clusters of primordial black holes.